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Abstract : This paper provides a method  for picking a rational point on  elliptic curves over the finite field  of characteristic 2. The method is practically much more useful than the traditional random picking method,
in the case when the cryptosystem replaces elliptic curves randomly in run-time.
Keywords : Elliptic curve , Rational point, Trace function.

1.  Introduction

In recent years the cryptosystem based on the elliptic curve has been widely studied as the most strong public key cryptosystem.

Much of practical procedures in the construction or use of groups for the elliptic curve cryptosystems are to pick an initial rational point on an elliptic curve .

There has been only one method-random pick method which works in a probabilistic polynomial time(see [1] and [2]).  Thus, the method can be used in the cryptosystems fixing the groups, but not in the systems which replace the groups randomly in real-time, because  it could not meet the strict requirements from the time allocation and the continuous current for such systems.

In fact, it is important to find a deterministic polynomial algorithm to pick a rational point on an elliptic curve (see [2]).

In this paper, we present one method of picking a rational point on any elliptic curve  over the finite field 
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. By this method, we are able to pick a rational point on an elliptic curve with a complexity of n field multiplications.

The paper is organized as follows.

In section 2 we discuss some properties of the trace function of 
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onto its inverse. In section 3 we show how to pick a rational point on an elliptic curve over the field 
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2. Some properties of the trace function  of  
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Let 
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Putting
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Particularly, we have
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To investigate the structure of 
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where  
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The following result is of interest.

     Lemma. We have
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The proof of this lemma is straightforward.

     Corollary 1. 
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i.e., the following sequence is exact.
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    Corollary 2. For 
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and vice versa, that is ,the set of all solutions of the equation  
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is entirely determined by the operator 
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     The two corollaries above  follow from a direct calculation by virtue of  the Lemma.

From above discussions we deduce that  
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 is, of course, 
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and the trace function
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The following theorem is of particular importance for next section.

     Theorem.  The trace function 
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First ,suppose that n is odd  and  n>2. 
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 which equals 2. Since  n > 2 , this is a contradiction.
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Since 3 is a prime number, the 
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-orbit whose order is less than 3 is the only fixed point. Also by a direct calculation, we can see that the set of the fixed points consists of  two elements s,t
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As proved above, from the fact that 
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that is,
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 i.e., the 
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Conversely, when n equals 1 or 2, one can easily deduce that 
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     By the theorem above, 
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Now  we  give  the  following  result  without proof.

     Corollary 3. 
[image: image112.wmf]m

-trace M is a bijection which maps 
[image: image113.wmf]+

f

 onto itself. And the orders of all orbits of M in 
[image: image114.wmf]+

f

 are more than 3.  Furthermore 
[image: image115.wmf]+

f

 does not contain any fixed point of M.

Thus we obtain the following commutative diagram :

[image: image116.wmf]+

+

-

+

¾

®

¬

¾

®

¬

f

f

f

f

m

l

M

M

b

b


3. Picking a rational point on the elliptic curve over 
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Let us consider a non-supersingular curve 
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Note that the two transformations above are one-to-one when 
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     In fact, if every element of 
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and this is a contradiction. Thus, we know that there exist always solutions to the equation (1) .

    The set  B may be statically given by calculations in advance.Although we have to calculate  the set B dynamically ,the complexity is much less than that of one field multiplication, because it is the skew-selecting operation in the field of characteristic 2. 

    Thus  the actual complexity  of every trial-check in B is about one field multiplication by 
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   As a result ,we are able to pick a rational point on a non-supersingular curve over 
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with a complexity of n field multiplications.

   Note :   When 
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 is a composite number, it is possible to discuss this problem ,but  we omit  them  here .
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